
Journal of Sound and Vibration (1997) 205(2), 151–165

A TUNABLE TORSIONAL VIBRATION
ABSORBER: THE CENTRIFUGAL DELAYED

RESONATOR

M. H, H. E  N. O

Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut,
U.S.A.

(Received 28 October 1996, and in final form 17 February 1997)

A novel active vibration absorption device, the Centrifugal Delayed Resonator (CDR),
is presented as an efficient way of eliminating undesired torsional oscillations in rotating
mechanical structures. A damped centrifugal pendulum device is forced to mimic an ideal
real-time tunable absorber utilizing a control torque in the form of proportional angular
position feedback with variable gain and time delay. Strengths of the technique consist of
total vibration suppression in the primary structure against harmonic torque excitation, full
effectiveness of the absorber against time-varying frequency, very wide range of operating
frequencies, complete decoupling of the feedback control from the structural and dynamic
properties of the primary structure, extremely simple implementation of the control scheme,
and fault-tolerant performance in the case of control failure.
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1. INTRODUCTION

A great number of rotating mechanical structures (e.g., engine-driven electrical generator
systems, crankshaft and transmission systems of aero, automobile and marine propulsion
engines) are often loaded with cyclical forces that cause undesirable torsional oscillatory
motions. Accepted ways of eliminating them are friction dampers and various dynamic
absorber arrangements.

The friction damper [1–4] is an auxiliary device for dissipating energy by means of the
frictional resistance between the primary structure* and a supplementary mass
(Figure 1(a)). It is indiscriminate against the frequency of disturbance and, in general, less
effective than comparable dynamic absorbers.

The conventional torsional absorber [3–6] is an auxiliary vibratory system that modifies
the vibration characteristics of the primary structure. It consists of a supplementary mass
elastically connected to the primary structure by a metallic or a rubber spring assembly
(Figure 1(b)). The natural frequency of the spring controlled absorber is constant and the
device is effective only when the frequency of disturbance coincides with the frequency to
which it is tuned. Furthermore, when the conventional absorber is used to deal with a given
resonant condition, its effect is to replace the troublesome resonant peak by two new
resonant conditions, one below and the other above the original resonant peak.

This passive device fails to effectively treat cases where the frequency of disturbance
varies in time. A recent active vibration absorption technique, the delayed resonator [7–9],

* Throughout the text, the following terms are used: the primary structure is the original rotating mechanical
structure alone; absorber unit is the single vibration absorber assembly alone; and the combined system is the
primary structure equipped with a set of absorber units.
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responds to this need. Using a control force in the form of the proportional position
feedback with time delay, a conventional absorber setting is forced to mimic an ideal
real-time tunable absorber (Figure 1(c)). Although the delayed resonator device completely
removes undesired oscillations from the primary structure under the time-varying
harmonic load, its applicability is limited to the cases where the frequency of disturbance
fluctuates within a certain range around the natural frequency of the mass–spring–damper
setting used. These limitations typically arise from stability and hardware related issues.

The centrifugal pendulum absorber [3, 4, 10, 11] is, again, an auxiliary vibratory
arrangement in which the motion of the supplementary mass is controlled by a centrifugal
force (Figure 1(d)). Since its natural frequency is directly proportional to the angular
velocity of the primary structure, the centrifugal pendulum absorber can be adjusted
to deal effectively even with a time-varying disturbance. However, the ratio of the
frequency of disturbance and the angular velocity of the primary structure must remain
constant.

In order to relax this requirement, a new active vibration elimination technique, the
centrifugal delayed resonator (CDR), is proposed as a favorable synthesis of the centrifugal
pendulum absorber and the delayed resonator control (Figure 2). Eliminating the
frequency proportionality restriction of the centrifugal pendulum setting, it can respond
to vibration problems with very wide frequency range. Typical examples can be seen in
the crankshaft and transmission systems of aero, automobile and marine propulsion
engines.

Figure 1. The friction damper (a), the conventional torsional absorber (b), the delayed resonator (c) and the
centrifugal pendulum absorber (d). The following notation is used: I1 and Ia denote the primary and absorber
inertias, respectively, ca and ka represent the torsional damping and stiffness members, respectively, and Ma is
a control torque in the form of the proportional position feedback with time delay; i.e., Ma = gcua(t− tc).
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Figure 2. The damped centrifugal pendulum (a) and the centrifugal delayed resonator (b). na =1; v0 = constant.

The CDR forms the core subject for this paper. Preliminary research results show rather
exciting features which are sought after in industry.

2. THE CONCEPT OF THE CENTRIFUGAL DELAYED RESONATOR

The crucial idea in the CDR scheme is to reconfigure the dynamics of a damped
centrifugal pendulum device such that it behaves like an ideal tunable resonator. Following
the delayed resonator technique, the excitation torque Ma based on the proportional
position feedback with a time delay is introduced to achieve this goal, as shown in Figure 2.
For small displacements ua and constant angular velocity v0, the new system dynamics is
represented by the linearized differential equation of motion

(Ia +maR2
a )u� a(t)+ cau� a (t)+maR1Rav

2
0ua (t)+ gua (t− t)=0. (1)

The derivation of this equation is presented in Appendix A, in order not to disrupt the
flow of the text. Also, a list of nomenclature is given in Appendix B. The corresponding
Laplace domain representation leads to the transcendental characteristic equation

C(s)= (Ia +maR2
a )s2 + cas+maR1Rav

2
0 + g e−ts =0. (2)

This equation possesses infinitely many roots. Their distribution for the gain g varying
form zero to infinity while the time delay t is constant can be studied from magnitude and
angle conditions. Considering an underdamped centrifugal pendulum, the limiting cases
are

lim
g:0

s=
−

1
2(Ia +maR2

a )
[ca 2z4(Ia +maR2

a )maRaRiv
2
0 − c2

a i],
g
G

G

F

f−a2
2l−1

t pi, l=1, 2, 3, . . . ,
(3)

lim
g:a

s=+a2
2l−1

t
pi, l=1, 2, 3, . . . . (4)

With this information a typical root-locus plot can be sketched as shown in Figure 3,
where the parameters R1 =0·15 m, Ra =3·749×10−2 m, Ia =2×10−7 kg m2, ma =0·5 kg,
ca =1·406×10−2 kg m2/s, v0 =500 rad/s and t=1·571×10−3 s are used. To achieve
the pure resonator behavior, two dominant roots of equation (2) should be placed on the
imaginary axis at the desired resonant frequency, while other roots remain in the
stable left-half plane. The proposition s=2vc i as the solution of equation (2) yields
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gc =z(cavc )2 + [(Ia +maR2
a )v2

c −maR1Rav
2
0 ]2, (5)

tc =
atan2[cavc , (Ia +maR2

a )v2
c −maR1Rav

2
0 ]+2(lc −1)p

vc
, lc =1, 2, 3. . . . (6)

The feedback gain gc and delay tc are control parameters that can be set according to
equations (5) and (6) to tune the CDR to the desired resonant frequency vc . This tuning
can be done in real time. A set of solutions similar to equations (5) and (6) is also possible
for negative values of the feedback gain gc . However, for the sake of simplicity, it is kept
outside the treatment of this text.

The implication of the parameter lc can be visualized in plots of gc (vc ) versus tc (vc ) and
vc versus tc , as depicted in Figures 4(a) and 4(b), respectively (the structural parameters
remain the same as in Figure 3). For lc =1, i.e., the first branch of the root loci crosses
the imaginary axis at the point of operation, there is a semi-infinite range of operating
frequencies for a given angular velocity v0. The lower frequency bound vA1 at the point
A corresponds to the stability limit of the CDR as the second branch crosses to the
unstable right half of the complex plane for the same gain and delay. For lc =2, i.e., the
second branch of the root loci carrying the imaginary roots of interest, the range of
operating frequencies is limited by both upper and lower bounds vA2 and vB1 due to the
first and third branch crossings at the points A and B, respectively. It is easy to observe
that for the frequency interval vA2 qvc qvB1, both the first and second branches (with
different corresponding delays) can be used for the stable CDR operation.

Typical plots of the control parameters versus the resonant frequency, i.e., equations (5)
and (6), are shown in Figures 5(a) and 5(b). The structural parameters Ra , Ia , ma and ca

are selected in such a way that the natural frequency (and thus, approximately, the
frequency of the resonant peak) of the lightly damped passive centrifugal pendulum
assembly is twice the angular velocity of the rotating base (i.e., va =2v0; see Appendix
A). Indeed, the example structure given above for Figures 3, 4 and 5 possesses this

Figure 3. The root locus plot for the CDR. ×, Open-loop poles; —Y—, increasing g.
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Figure 4. Plots of (a) gc(vc) versus tc(vc) and (b) vc versus tc . —Y—, increasing vc .

property. Solid curves represent graphs of gc (vc ) and tc (vc ) for different values of the
angular velocity v0 in rad/s. Dashed curves correspond to the operating points for the
order of resonant n=2, where the order of resonance is defined as the ratio of the resonant
frequency of the CDR and the angular velocity of the rotating base (i.e., n=vc /v0).

Compared to the delayed resonator based on the conventional mass–spring–damper
setting [7–9], more relaxed limits of operating frequencies are expected to the advantage
of the CDR device. These limitations typically arise from the stability and hardware related
issues; for instance, when the required feedback gain gc is too high or the sensitivity
Stc,vc =Dtc /Dvc is very low.

The conventional delayed resonator can be represented by an equivalent angular velocity
v0 in Figure 5, e.g., 500 rad/s for the natural frequency of 1000 rad/s. It is observed that
the feedback gain gc increases rapidly and that the sensitivity Stc,vc decreases considerably

Figure 5. Control parameters versus the resonant frequency of the CDR, v0 (rad/s) parameter as marked.
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Figure 6. The SDOF system with the centrifugal delayed resonator. na =1, v0 = constant.

when the resonant frequency vc departs from the neighborhood of the natural frequency
of the mass–spring–damper setting used. That is, the tuning becomes more difficult to do.

On the other hand, as long as the frequency vc fluctuates around the order of resonance
n=2 (i.e., intersections of the solid and dashed lines in Figure 5), the CDR always operates
near the minimum feedback gain gc and the maximum sensitivity Stc,vc . That means that
the operation consumes relatively low energy and it is easy to tune. These features are very
favorable when the CDR is used as a tuned dynamic absorber, as explained next.

3. THE CENTRIFUGAL DELAYED RESONATOR AS A VIBRATION ABSORBER

Attached to the primary structure disturbed by a harmonic load, the properly tuned
CDR can act as an ideal torsional vibration absorber. The resulting combined system of
the single-degree-of-freedom (SDOF) primary structure equipped with the CDR is
depicted in Figure 6. For small displacements, the dynamics of the combined system are
given by the following linearized system of simultaneous differential equations, as detailed
in Appendix A:

[Ia +ma (R2
a +R1Ra )]D� 1(t)+ (Ia +maR2

a )u� a (t)+ cau� a (t)

+maR1Rav
2
0ua (t)+ gua (t− t)=0, (7)

[I1 + naIa + nama (R1 +Ra )2]D� 1(t)+C1D� 1(t)+K1D1(t)

+ [naIa + nama (R2
a +R1Ra )]u� a (t)− nacau� a (t)− nagua (t− t)−M1(t)=0. (8)

The corresponding Laplace domain representation leads to the following solution for
the relative displacement of the primary structure:

D1(s)=
C(s)

A(s)+B(s)g e−ts M(s). (9)

The expressions A(s) and B(s) in the denominator are known polynomials of fourth and
second order, respectively, and they are also defined in Appendix A. The numerator C(s)
is identical to the characteristic expression in equation (2). Therefore, as long as the
denominator possesses stable roots and the CDR is tuned to the frequency of disturbance
(i.e., v=vc , g= gc and t= tc ), the primary structure exhibits no oscillatory motion in
the steady state:

lim
t:a

D1(t)=0. (10)
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Equations (7) and (8) can be combined in the Laplace domain to obtain the transfer
function between the disturbing torque M1 and the absorber displacement ua . Setting
s=2vi and calculating the magnitude of the resulting expression yields the equation for
the amplitude of the steady state oscillations of the absorber:

max
t:a

ua (t)=
A

namaRav
2{2[Ia /(maRa )+Ra ]− [(v0/v)2 −1]R1}

. (11)

Based on equation (11), the absorber parameters Ia , ma and na can be selected for the
given amplitude of the disturbing torque A and the maximum absorber displacement ua

allowed. This is an important design consideration, since the maximum absorber
displacement is limited by the range of validity of the linear model given in equations (7)
and (8).

Due to the linearity of the combined system, the frequency of excitation can be detected
by observing the displacement of the absorber unit relative to the primary structure, as
shown schematically in Figure 7. Since the control parameters are functions of the absorber
structural parameters and the angular velocity of the rotating base only (see equations (5)
and (6)), the CDR control scheme is entirely decoupled from the structural and dynamic
parameters of the primary system.

Perfect vibration attenuation is achieved if the parameters involved in the expressions
for gc and tc (i.e., equations (5) and (6)) are known precisely. In many cases their values
can only be estimated to a certain degree of accuracy and they may also change in time.
In such applications an automatic tuning procedure is needed in order to robustize the
CDR control against these uncertainties. A preliminary version of this procedure is
described in reference [12]. The authors are mindful of the importance of this control
robustization step; however, it is excluded from this text for the sake of brevity.

In summary, the properly tuned CDR can remove completely undesired vibrations from
the primary structure under a harmonic torque disturbance. This property can be proven
valid for a multi-degree-of-freedom (MDOF) primary structure as an extension to the
development presented above.

4. STABILITY OF THE COMBINED SYSTEM

For the given angular velocity of the rotating base, the CDR absorber can effectively
operate in a certain range of disturbing frequencies. While the upper bound of the range
of operation typically arises from hardware related issues, the lower bound is dictated by

Figure 7. A block diagram of the CDR control scheme.
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Figure 8. A gain–delay plot: the bold line represents gc(vc) versus tc(vc) and the light line gcs(vcs) versus
tcs(vcs).

the stability limit of the combined system, as studied below. These operational limits can
be found off-line during the design stage of the CDR.

The characteristic equation of the CDR alone (i.e., equation (2)) and the characteristic
equation of the combined system*,

A(s)+B(s)g e−ts =0, (12)

show a similar fundamental feature: linear dynamics with pure time delay. Therefore, the
increasing feedback gain leading to instability of the combined system is expected.
Consequently, the gain corresponding to the CDR operation should always remain smaller
than the gain for which the combined system becomes unstable (for a given delay tc ).

The feedback gain and delay which lead to the global system marginal stability are to
be determined from its characteristic equation (12). At the point at which the root loci
cross from the stable left half-plane to the unstable right half-plane, there are at least two
roots of the characteristic equation on the imaginary axis; i.e., s=vcs i. Imposing this
condition in equation (12) yields

gcs = b A(vcs i)
B(vcs i) b, tcs =

1
vcs $(2lcs −1)p−{

A(vcs i)
B(vcs i)%, lcs =1, 2, 3, . . . . (13, 14)

As mentioned above, for a given tc the inequality of gc Q gcs should be satisfied for a
stable operation. In order better to display this condition, it is convenient to study the
corresponding zone of acceptable gains and delays in superposed parametric plots of gc (vc )
versus tc (vc ) for the CDR alone and gcs (vcs ) versus tcs (vcs ) for the combined system as
depicted in Figure 8. For this particular figure the parameters of the primary structure are
selected as I1 =1·125×10−1 kg m2, c1 =22·5 kg m2/s, k1 =1·125×105 kg m2/s2 and
R1 =0·15 m, the number of the absorber units is taken as na =2, the absorber parameters
are considered the same as in Figure 3 and the angular velocity of the base remains

* The expressions A(s) and B(s) in equation (12) are polynomials of fourth and second order, respectively,
defined by equations (A21)–(A27) in Appendix A.
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v0 =500 rad/s. Implementing the condition expressed above, i.e., gc Q gcs , an operable
range is found as tQ tcr with the critical time delay tcr =3·646×10−3 s. The corresponding
frequency range is vc qvcr , with the lower bound vcr =845·5 rad/s.

Repeating the same stability analysis for a varying angular velocity v0 in a given range
of interest, the stability diagram can be generated as shown in Figure 9. These critical
frequencies can be built into the control algorithm to assure operation of the CDR only
in the stable range. That is, at a given v0, any disturbance vEvcr must be identified
as inoperable. As a preferred alternative, this scheme can be utilized to design the
CDR absorber in such a way that the expected frequencies of disturbance remain
operable.

The combined system is subject to changes in two parameters which can possibly
jeopardize its stability: the angular velocity v0 and the frequency of disturbance v. Any
change in the angular velocity v0 has a direct influence on the stability properties of the
combined system. In reality, however, the changes are smooth and comparably slow due
to the inertias involved in the rotating structure. Since v0 is monitored continuously for
the CDR tuning (see equations (5) and (6)), the stability limits vcr can be updated
periodically based on these measurements. The frequency of disturbance v, on the other
hand, is a property of the external disturbance. Therefore, it has no influence on the system
stability until the control parameters gc and tc are modified to correspond to the detected
value of v. Naturally, the controller should decide on these modifications only if the
condition of vqvcr is satisfied.

In summary, the following steps are taken at every instant when v0 or v is updated:
(a) the stability limit vcr is determined; (b) the frequency of disturbance v is
compared with the current stability limit vcr ; (c) for vqvcr , the control parameters
should be implemented according to equations (5) and (6); (d) for vEvcr , the passive
mode should be introduced by setting g=0. The last case, however, should be
prevented by proper design of the CDR for expected operating frequencies, as mentioned
earlier.

Figure 9. The stability diagram for the combined system.
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Figure 10. The simulated time response of the combined system: (a) the disturbance torque; (b) the relative
displacement of the primary structure (the bold line is for the CDR and the light line for a passive centrifugal
pendulum absorber); (c) the angular displacement of the CDR absorber.

5. SIMULATION EXAMPLE

The characteristics claimed above can be verified by the time response simulation of an
example combined system. The primary structure is taken as a cylindrical body with a mass
of 10 kg, a radius of 0·15 m, a natural frequency of 1000 rad/s and a damping ratio of 0·1,
which leads to the structural parameters I1 =1·125×10−1 kg m2, c1 =22·5 kg m2/s,
k1 =1·125×105 kg m2/s2 and R1 =0·15 m. The frequency of disturbance is assumed to
fluctuate within a certain interval around the order of disturbance n=2. Therefore, the
CDR assembly is designed in such a way that the resonant peak of the uncontrolled
absorber matches 2v0 (see Appendix A). If the damping ratio of the absorber unit is taken
as 0·01, the corresponding structural parameters are Ia =2×10−7 kg m2, ma =0·5 kg,
ca =1·406×10−2 kg m2/s and Ra =3·749×10−2 m. The number of absorber units
attached to the primary structure is selected as na =2.

The time response simulation using the non-linear model of the combined system (as
given in Appendix A) is represented by the bold line in Figure 10. The primary structure
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rotating at the constant angular velocity v0 =500 rad/s is disturbed by the harmonic
torque M1 of amplitude A=200 Nm and frequency v=1000 rad/s. It can be observed
that, after approximately 0·12 s of transient response, all undesired oscillations are
practically removed from the primary structure. That is, a negating torque is implemented
by the CDR on the primary structure to eliminate the effect of the harmonic disturbance.
At t=0·2 s a step change in the disturbance frequency takes place from 1000 rad/s to
1050 rad/s. After another transient period of approximately the same duration, the
vibration suppression of the primary structure takes place and the absorber settles at a
new steady state amplitude.

The light line in Figure 10(b) represents the behavior of the system with a damped
centrifugal pendulum absorber (i.e., no control feedback is used). The vibration
suppression is acceptable only in the first half of the test (i.e., for tQ 0·2 s). This is expected
because the centrifugal pendulum is tuned to show a peak response at 1000 rad/s. The effect
of the damping, however, is noticeable in the form of non-zero residual oscillations in the
primary structure. It is seen that in the case of control failure the CDR can turn itself into
a passive absorber with a partial effectiveness, which can be considered the fail-tolerant
feature of the CDR method.

6. CONCLUSIONS

The centrifugal delayed resonator is presented as a tunable device for active suppression
of torsional vibrations in rotating mechanical structures. Its attractive features over the
vibration control techniques in current practice can be summarized as follows:

(1) In steady state, the CDR is capable to completely eliminate undesired oscillations
of the primary structure under a harmonic torque disturbance.

(2) Due to its real-time tuning, the CDR is fully effective for vibration problems with
a time-varying harmonic disturbance. It can deal with an extremely wide frequency range,
especially in cases in which the frequency of disturbance tends to increase with the angular
velocity of the primary structure.

(3) The control scheme is decoupled from the structural and dynamic properties of the
primary structure to which the CDR is attached.

(4) The control algorithm for the CDR is simple to implement, especially utilizing
advanced digital signal processing devices.

(5) Due to its hybrid (i.e., active–passive) character, the CDR can still be partially
effective even in the case of control failure, assuming that the passive centrifugal pendulum
absorber used is tuned properly.
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APPENDIX A: DERIVATIONS

A.1. -   

The mechanical structure under consideration (the combined system) is shown in
Figure 6. The base rotating with the constant angular velocity v0 carries the SDOF primary
structure (with parameters R1, I1, c1 and k1) which is acted on by the disturbing torque
M1. The primary structure is equipped with na absorber units (with parameter Ra , Ia , ma

and ca ), each of which is controlled by the torque Ma based on the proportional position
feedback with time delay.

The velocity of the typical absorber unit attached to the rotating primary structure is
given by the expression

v2
a =R2

1u� 21 +R2
a (u� 1 + u� a )2 +2R1Ra (u� 21 + u� 1u� a ) cos ua . (A1)

The kinetic energy composed of the translational and rotational components of the
absorber unit motion is

Ea = 1
2{Ia (u� 1 + u� a )2 +ma [R2

1u� 21 +R2
a (u� 1 + u� a )2 +2R1Ra (u� 21 + u� 1u� a ) cos ua ]}. (A2)

The kinetic energy of the rotational motion of the primary structure can be expressed
simply as

E1 = 1
2I1u� 21 . (A3)

Assuming that the influence of gravity forces is negligible, the Lagrangian function has
the form

L= 1
2{I1u� 21 + naIa (u� 1 + u� a )2 + nama [R2

1u� 21 +R2
a (u� 1 + u� a )2 +2R1Ra (u� 21 + u� 1u� a ) cos ua ]}. (A4)

Taking the angular displacements u1 and ua as generalized co-ordinates, the
corresponding generalized forces are

Q1 =−C1(u� 1 −v0)−K1(u1 −v0t)+ nacau� a + nagua (t− t)+M1, (A5)

Qa =−nacau� a − nagua (t− t). (A6)
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With this information, the Lagrange’s equations of motion for the combined system can
be written as

Q1 =
d
dt 01L

1u� 11−
1L
1u1

, Qa =
d
dt 01L

1u� a1−
1L
1ua

. (A7, A8)

Differentiating L and introducing the relative displacement of the primary structure,
D1 = u1 −v0t, yields the following system of simultaneous non-linear differential equations
of motion:

[I1 + naIa + nama (R2
1 +R2

a +2R1Ra cos ua )]D� 1 + [naIa + nama (R2
a +R1Ra cos ua )]u� a

−namaR1Ra [2(v0 +D� 1)u� a + u� 2a ] sin ua −C1D� 1 +K1D1 − nacau� a − nagua (t− t)−M1 =0,

(A9)

[Ia +ma (R2
a +R1Ra cos ua )]D� 1 + (Ia +maR2

a )u� a

+maR1Ra (v0 +D� )2 sin ua + cau� a + gua (t− t)=0. (A10)

A.2.    

Assuming small angular displacements, the non-linear equations of motions can be
linearized in the neighborhood of the point of stable equilibrium (i.e., M1 =0,
D1 =D� 1 =D� 1 =0 and ua = u� a = u� a =0). As a favorable result, the theory of linear systems
can be used to study the dynamic properties of the combined system and its components.

A.2.1. Combined system
Denoting the left sides in equations (A9) and (A10) by f1 and fa , respectively, the

equations of motion can be linearized in the neighborhood of the point of equilibrium O
as

[1f1/1D� 1]0D� 1 + [1f1/1D� 1]0D� 1 + [1f1/1D1]0D1 + [1f1/1u� a ]0u� a +[1f1/1u� a ]0u� a

+[1f1/1ua ]0ua +[1f1/1ua (t− t)]0ua (t− t)+ [1f1/1M1]0M1 =0, (A11)

[1fa /1D� 1]0D� 1 + [1fa /1D� 1]0D� 1 + [1fa /1u� a ]0u� a

+[1fa /1u� a ]0u� a +[1fa /1ua ]0ua +[1fa /1ua (t− t)]0ua (t− t)=0. (A12)

Evaluating the partial derivatives involved, yields the following system of simultaneous
transcendental differential equations of motion for the combined system:

[I1 + naIa + nama (R1 +Ra )2]D� 1 +C1D� 1 +K1D1

+ [naIa + nama (R2
a +R1Ra )]u� a − nacau� a − nagua (t− t)−M1 =0, (A13)

[Ia +ma (R2
a +R1Ra )]D� 1 + (Ia +maR2

a )u� a + cau� a +maR1Rav
2
0ua + gua (t− t)=0. (A14)

A.2.2. Centrifugal delayed resonator
To study the dynamics of the CDR alone, the primary structure is assumed to be rigidly

connected to the rotating base; that is, D1 =D� 1 =D� 1 =0. With this proposition, equation
(A14) takes the form

(Ia +maR2
a )u� a + cau� a +maR1Rav

2
0ua + gua (t− t)=0. (A15)
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A.2.3. Uncontrolled absorber unit
At the stage of the CDR design (i.e., proper selection of the structural parameters Ra ,

Ia , ma and ca ), the dynamics of the uncontrolled absorber unit should be analyzed.
Replacing gua (t− t) by Ma in equation (A15) yields the equation of motion for forced
oscillations of the damped centrifugal pendulum absorber alone:

(Ia +maR2
a )u� a + cau� +maR1Rav

2
0ua =Ma . (A16)

The relationships between the structural parameters and the corresponding natural
frequency and damping ratio become

va =X R1

Ra + Ia /(maRa )
v0, za =

ca

2v0zmaR1Ra (Ia +maR2
a )

. (A17, A18)

The resonant peak of the frequency response of the uncontrolled absorber occurs at the
frequency of excitation (for light damping)

vp =vaz1−2z2
a 1va . (A19)

A.3.  

Based on the Laplace representation of equations (7) and (8), the characteristic equation
of the combined system can be written as

A(s)+B(s)g e−ts =0. (A20)

The expressions A(s) and B(s) are polynomials of fourth and second order, respectively,
defined as

A(s)= a4s4 + a3s3 + a2s2 + a1s+ a0, a0 =mak1R1Rav
2
0,

a1 =mac1R1Rav
2
0 + cak1, (A21–A23)

a2 = k1(Ia +maR2
a )+maR1Rav

2
0 [I1 + naIa + nama (R1 +Ra )2]+ c1ca , (A24)

a3 = I1ca + Ia (2naca + c1)+ma [c1R2
a + naca (R2

1 +2R2
a +3R1Ra )], (A25)

a4 = I1Ia +ma (naIaR2
1 + I1R2

a ), (A26)

B(s)= {I1 + na [2Ia +ma (R2
1 +2R2

a +3R1Ra )]}s2 + c1s+ k1. (A27)

APPENDIX B: NOMENCLATURE

A amplitude of the disturbing torque acting on the primary structure (Nm)
ca damping coefficient of the absorber unit (kg m2/s)
c1 damping coefficient of the primary structure (kg m2/s)
Ea kinetic energy of the absorber unit (J)
E1 kinetic energy of the primary structure (J)
g control feedback gain (Nm)
Ia inertia moment of the absorber unit about the center of mass (kg m2)
I1 inertia moment of the primary structure about the center of rotation (kg m2)
k1 stiffness coefficient of the primary structure (kg m2/s2)
L Lagrangian function (J)
M1 disturbing torque acting on the primary structure (Nm)
Ma control torque acting on the absorber unit (Nm)
ma mass of the absorber unit (kg)
n order of disturbance (−)
na number of absorber units attached to the primary structure (−)
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Ra distance between the point of suspension of the absorber unit and the center of mass of the
absorber unit (m)

R1 distance between the center of rotation of the primary structure and the point of suspension
of the absorber unit (m)

Stc,vc sensitivity of tc with respect to vc (m/s)
va translational velocity of the center of mass of the absorber unit (s2/rad)
D1 angular displacement of the primary structure relative to the rotating base (rad)
za damping ratio of the absorber unit (−)
ua angular displacement of the absorber unit relative to the primary structure (rad)
u1 angular displacement of the primary structure relative to the fixed frame of reference (rad)
t control feedback delay (s)
tcr critical feedback delay (s)
v frequency of the disturbing torque acting on the primary structure (rad/s)
va natural frequency of the passive absorber unit (rad/s)
vc resonant frequency of the centrifugal delayed resonator (rad/s)
vcr critical frequency of operation (rad/s)
vcs resonant frequency of the combined system (rad/s)
v0 angular velocity of the rotating base (rad/s)
vp peaking frequency of the passive absorber unit (rad/s)


